Geometry and dynamics of some meromorphic functions

نویسنده

  • Janina Kotus
چکیده

The meromorphic maps fλ(z) = λ(1−exp(−2z))−1, λ > 0, of the complex plane are thoroughly investigated. With each map fλ associated is its projection Fλ on the infinite cylinder Q. This map and the set Jr(Fλ) consisting of those points in the cylinder Q whose ω-limit set under Fλ is not contained in the set {0,−∞} will form the primary objects of our interest in this article. Let hλ = HD(Jr(Fλ)) be the Hausdorff dimension of Jr(Fλ). We prove that hλ ∈ (1, 2). The hλ-dimensional Hausdorff measure Hhλ of Jr(Fλ) is proven to be positive and finite. The hλ-dimensional packing measure of Jr(Fλ) is shown to be locally infinite at every point of this set. There exists a unique Borel probability Fλ-invariant measure μλ on Jr(Fλ) absolutely continuous with respect to the Hausdorff measure Hhλ . This measure turns out to be ergodic and equivalent to Hhλ .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On convolution properties for some classes of meromorphic functions associated with linear operator

In this paper, we defined two classes $S_{p}^{ast }(n,lambda ,A,B)$ and\ $ K_{p}(n,lambda ,A,B)$ of meromorphic $p-$valent functions associated with a new linear operator. We obtained convolution properties for functions in these classes.

متن کامل

Some properties of extended multiplier transformations to the classes of meromorphic multivalent functions

 In this paper, we introduce new classes $sum_{k,p,n}(alpha ,m,lambda ,l,rho )$ and $mathcal{T}_{k,p,n}(alpha ,m,lambda ,l,rho )$ of p-valent meromorphic functions defined by using the extended multiplier transformation operator. We use a strong convolution technique and derive inclusion results. A radius problem and some other interesting properties of these classes are discussed.

متن کامل

Certain subclass of $p$-valent meromorphic Bazilevi'{c} functions defined by fractional $q$-calculus operators

The aim of the present paper is to introduce and investigate a new subclass of Bazilevi'{c} functions in the punctured unit disk $mathcal{U}^*$ which have been described through using of the well-known fractional $q$-calculus operators, Hadamard product and a linear operator. In addition, we obtain some sufficient conditions for the func...

متن کامل

Composition operators and natural metrics in meromorphic function classes $Q_p$

‎In this paper‎, ‎we investigate some results on natural metrics on the $mu$-normal functions and meromorphic $Q_p$-classes‎. ‎Also‎, ‎these classes are shown to be complete metric spaces with respect to the corresponding metrics‎. ‎Moreover‎, ‎compact composition operators $C_phi$ and Lipschitz continuous operators acting from $mu$-normal functions to the meromorphic $Q_p$-classes are characte...

متن کامل

On uniqueness of meromorphic functions sharing five small functions on annuli

The purpose of this article is to investigate the uniqueness of meromorphic functions sharing five small functions on annuli.

متن کامل

Five-value rich lines‎, ‎Borel directions and uniqueness of meromorphic functions

For a meromorphic function $f$ in the complex plane, we shall introduce the definition of five-value rich line of $f$, and study the uniqueness of meromorphic functions of finite order in an angular domain by involving the five-value rich line and Borel directions. Finally, the relationship between a five-value rich line and a Borel direction is discussed, that is, every Borel direction of $f$ ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005